
The Development of Cyclic RGD Peptides Stabilized Through 99mTc/Re(CO)3+
Abstract
Protein secondary structure can be mimicked by incorporating structural constraints into peptides and this can be facilitated by metal coordination. The objective of this project is to establish a chelation system with a cancer targeting peptide sequence, where the coordination to a metal centre results in a cyclic metallopeptide. Cyclic RGD peptides are antagonists for αvβ3 and other integrins, which are present during tumour angiogenesis. Arg-Gly-Asp (RGD) sequence is employed in the peptide backbone, with an un-natural amino acid (3-Pal) and a chelating molecule (pyridyl-triazole, pyta) present on opposite ends of the peptide sequence to form a linear peptide sequence, pyta-RGD-3-Pal-NH2. The linear peptide was reacted with [Re(OH2)3(CO)3]+ to form a cyclic system, with the pyridyl-triazole coordinating in a bidentate fashion. The linear peptide and resulting cyclic metallopeptide were characterized by high resolution mass spectrometry (HRMS), Circular Dichroism (CD) spectroscopy, one- and two-dimensional 1H-NMR spectroscopy, variable temperature (VT) NMR spectroscopy, with purity > 90% as determined by HPLC. Computational studies on the coordinated peptide suggested intra-molecular hydrogen bonging that were consistent with VT NMR data. The linear peptide was successfully radiolabelled with Tc-99m demonstrating the potential application as a SPECT imaging agent for angiogenesis. This approach to adding a structural constraint, through metal-based peptide cyclization, results in a metallopeptide where the metal is central to creating the turn mimetic.