Electronic Thesis and Dissertation Repository

Degree

Master of Engineering Science

Program

Electrical and Computer Engineering

Supervisor

Dr. Mehrdad R. Kermani

Abstract

In recent years, Magneto-Rheological (MR) fluids devices are widely studied and used for various purposes. Among these MR fluids devices, the MR actuator has attracted increasing attention for last two decades. An MR actuator is usually made of an active component (motor) and MR clutches. Compared with the regular actuators, the MR actuator features compliance due to the existence of MR fluids, which is commonly consider as benefits at the aspect of safety. On the other hand, the MR actuator has advantages on controllable bandwidth, torque-mass and torque-inertia ratios compared with the other compliant actuators.

In this study, a new closed-loop, Field-Programable-Gate-Array (FPGA) based control scheme to linearize an MR clutch's input-output relationship is presented. The feedback signal used in this control scheme is the magnetic field acquired from hall sensors within the MR clutch. The FPGA board uses this feedback signal to compensate for the nonlinear behavior of the MR clutch using an estimated model of the clutch magnetic field. The local use of an FPGA board will dramatically simplify the use of MR clutches for torque actuation. The effectiveness of the proposed technique is validated using an experimental platform that includes an MR clutch as part of a compliant actuation mechanism. The results clearly demonstrate that the use of the FPGA based closed-loop control scheme can effectively eliminate hysteretic behaviors of the MR clutch, allowing to have linear actuators with predictable behaviors. Moreover, a novel optimization design of MR clutches is proposed. Based on the optimization, the characteristics of MR clutches in three common configurations are discussed and compared. People can select suitable configuration of MR clutch before design. Lastly, a lightweight mobile robot is developed by using MR actuators. This mobile robot also has large driving force and can stop at any positions without running the motor.

Share

COinS