Electronic Thesis and Dissertation Repository

Degree

Master of Science

Program

Computer Science

Supervisor

Lucian Ilie

Abstract

Oligonucleotides are short, single-stranded fragments of DNA or RNA, designed to readily bind with a unique part in the target sequence. They have many important applications including PCR (polymerase chain reaction) amplification, microarrays, or FISH (fluorescence in situ hybridization) probes. While traditional microarrays are commonly used for measuring gene expression levels by probing for sequences of known and predicted genes, high-density, whole genome tiling arrays probe intensively for sequences that are known to exist in a contiguous region. Current programs for designing oligonucleotides for tiling arrays are not able to produce results that are close to optimal since they allow oligonucleotides that are too similar with non-targets, thus enabling unwanted cross-hybridization. We present a new program, BOND-tile, that produces much better tiling arrays, as shown by extensive comparison with leading programs.

Share

COinS