"Enhanced Voltage-Sourced Inverters for Large-Scale Grid-Connected PV Systems" by Hamidreza Ghoddami
Electronic Thesis and Dissertation Repository

Degree

Doctor of Philosophy

Program

Electrical and Computer Engineering

Supervisor

Dr. Amirnaser Yazdani

Abstract

This thesis is mainly focused on (i) modeling of large-scale PV systems in order to study the factors that influence the capacity, efficiency, power quality and safety in connection with the power grid and (ii) proposing system- and circuit-level solutions and control strategies/techniques to improve the aforementioned factors. To that end, a model for PV array is developed to study the mismatch power loss in different PV array interconnection methods, especially during the partial shading condition. Further, a two-MPPT structure is proposed to reduce the mismatch power loss in centrally structured PV systems. Then, a single-stage VSC-based system is proposed to utilize the two-MPPT structure for better efficiency. The proposed system also doubles the DC-link voltage while respecting the safety standards, which in turn, increases the capacity and the efficiency of the central inverter. To further improve capacity and efficiency, a two-stage system is proposed in which the variable MPP voltage of smaller sub-arrays are regulated, by dedicated DC-DC boost converters, at the inverter DC-side terminals. This lets the inverter use the full DC voltage permissible rating and reduces the ohmic loss in DC and AC wirings and in the transformer. The system employs a three-level NPC inverter which generates output with better power quality, facilitates the adoption of two-MPPT structure, and permits utilizing low-voltage (half-rated) switches. The system also promotes the modular/distributed structure which improves the efficiency under partial shading and enables the possibility of utilizing PV modules of different types, ratings, and alignments. Finally, a mitigation technique is proposed in the inverter and grid-interface structures to prevent formation of damaging temporary overvoltages, which sometimes are produced in power systems by distributed generations including PV. The technique utilizes a fourleg inverter connected to a grid through a Y/YG isolation transformer. The effectiveness of the proposed techniques and control strategies are demonstrated through time-domain simulation studies conducted in the PSCAD/EMTDC software environment.

Share

COinS