Electrical and Computer Engineering Publications
Protocrystalline Si:H p-type layers for maximization of the open circuit voltage in a-Si:H n-i-p solar cells
Document Type
Conference Proceeding
Publication Date
1-1-2002
Volume
715
Journal
Materials Research Society Symposium - Proceedings
First Page
565
URL with Digital Object Identifier
10.1557/proc-715-a6.1
Last Page
570
Abstract
We have revisited the issue of p-layer optimization for amorphous silicon (a-Si:H) solar cells, correlating spectroscopic ellipsometry (SE) measurements of the p-layer in the device configuration with light current-voltage (J-V) characteristics of the completed solar cell. Working with p-layer gas mixtures of H2/SiH4BF3 in rf plasma-enhanced chemical vapor deposition (PECVD), we have found that the maximum open circuit voltage (Voc) for n-i-p solar cells is obtained using p-layers prepared with the maximum possible hydrogen-dilution gas-flow ratio R=[H2]/[SiH4], but without crossing the thickness-dependent transition from the a-Si:H growth regime into the mixed-phase amorphous + microcrystalline [(a+μc)-Si:H] regime for the ∼200 Å p-layers. As a result, optimum single-step p-layers are obtained under conditions similar to those applied for optimum i-layers, i.e., by operating in the so-called "protocrystalline" Si:H film growth regime. The remarkable dependence of the p-layer phase (amorphous vs. microcrystalline) and n-i-p solar cell Voc on the nature of the underlying i-layer surface also supports this conclusion.