Electrical and Computer Engineering Publications

Optimizing design of household scale hybrid solar photovoltaic + combined heat and power systems for Ontario

Document Type

Conference Proceeding

Publication Date

12-1-2009

Journal

Conference Record of the IEEE Photovoltaic Specialists Conference

First Page

001274

URL with Digital Object Identifier

10.1109/PVSC.2009.5411247

Last Page

001279

Abstract

This paper investigates the feasibility of implementing a hybrid solar photovoltaic (PV) + combined heat and power (CHP) and battery bank system for a residential application to generate reliable base load power to the grid in Ontario. Deploying PV on a large-scale has a penetration level threshold due to the inherent power supply intermittency associated with the solar resource. By creating a hybrid PV+CHP system there is potential of increasing the PV penetration level. One year of one second resolution pyranometer data is analyzed for Kingston Ontario to determine the total amount of PV energy generation potential, the rate of change of PV power generation due to intermittent cloud cover, and the daily CHP run time required to supply reliable base load power to the grid using this hybrid system. This analysis found that the vast majority of solar energy fluctuations are small in magnitude and the worst case energy fluctuation can be accommodated by relatively inexpensive and simple storage with conventional lead-acid batteries. For systems where the PV power rating is identical to the CHP unit, the CHP unit must run for more than twenty hours a day for the system to meet the base load requirement during the winter months. This provides a fortunate supply of heat, which can be used for the needed home heating. This paper provides analysis for a preliminary base line system. ©2009 IEEE.

This document is currently not available here.

Share

COinS