Electrical and Computer Engineering Publications
Scalable honeycomb top contact to increase the light absorption and reduce the series resistance of thin film solar cells
Document Type
Article
Publication Date
1-1-2019
Volume
9
Issue
1
Journal
Optical Materials Express
URL with Digital Object Identifier
10.1364/OME.9.000256
Abstract
This paper presents a novel design for the top contact of thin film photovoltaic (PV) solar cells. The new top contact is formed by fabricating a 20nm thin honeycomb shaped silver mesh on top of an ultra-thin 13nm of indium tin oxide. The new top contact offers the potential to reduce the series resistance of the cell while increasing the light current via plasmonic resonance. Using the nano-bead lithography technique the honeycomb top contact was fabricated and electrically characterized. The experimental results verified the new contact reduces the sheet resistance by about 40%. Numerical simulations were then used to analyze the potential performance enhancement in the cell. The results suggest the proposed top contact integrated with a typical thin film hydrogenated amorphous silicon PV device would lead to more than an 8% improvement in the overall efficiency of the cell.