Electrical and Computer Engineering Publications
Open-source grinding machine for compression screw manufacturing
Document Type
Article
Publication Date
9-1-2020
Volume
5
Issue
3
Journal
Inventions
First Page
1
URL with Digital Object Identifier
10.3390/inventions5030026
Last Page
27
Abstract
Some of the most promising distributed recycling and additive manufacturing (DRAM) technical systems use fused particle fabrication (FPF) or fused granular fabrication (FGF), where compression screws force post-consumer waste plastic through a heated nozzle for direct 3D printing. To assist the technical evolution of these systems, this study provided the details of an invention for a low-cost, easily replicable open-source grinding machine for compression screw manufacturing. The system itself can be largely fabricated using FPF/FGF following the self-replicating rapid prototyper (RepRap) methodology. This grinding machine can be made from a cordless cut-off grinder and < $155 in parts. The new invention is demonstrated to be able to cut custom screws with variable (i) channel depths, (ii) screw diameters, (iii) screw lengths, (iv) pitches, (v) abrasive disk thicknesses, (vi) handedness of the screws, (vii) and materials (three types of steel tested: 1045 steel, 1144 steel, and 416 stainless steel). The results show that the device is more than capable of replicating commercial screws as well as providing makers with a much greater flexibility to make custom screws. This invention enables the DRAM toolchain to become even more self-sufficient, which assists the goals of the circular economy.