Electrical and Computer Engineering Publications
Document Type
Article
Publication Date
7-2018
Journal
International Workshop on Professional Search (ACM SIGIR - ProfS 2018)
First Page
12
Last Page
17
Abstract
The lessons learned (LL) repository is one of the most valuable sources of knowledge for a software organization. It can provide distinctive guidance regarding previous working solutions for historical software management problems, or former success stories to be followed. However, the unstructured format of the LL repository makes it difficult to search using general queries, which are manually inputted by project managers (PMs). For this reason, this repository may often be overlooked despite the valuable information it provides. Since the LL repository targets PMs, the search method should be domain specific rather than generic as in the case of general web searching. In previous work, we provided an automatic information retrieval based LL classifier solution. In our solution, we relied on existing project management artifacts in constructing the search query on-the-fly. In this paper, we extend our previous work by examining the impact of the hybridization of multiple LL classifiers, from our previous study, on performance. We employ two of the hybridization techniques from the literature to construct the hybrid classifiers. An industrial dataset of 212 LL records is used for validation. The results show the superiority of the hybrid classifier over the top achieving individual classifier, which reached 25%.
Citation of this paper:
Abdellatif T.M., Capretz L.F. and Ho D. Searching for Relevant Lessons Learned Using Hybrid Information Retrieval Classifiers: A Case Study in Software Engineering, International Workshop on Professional Search (ACM SIGIR - ProfS 2018), pp. 12-17, Ann Arbor, Michigan, USA, July 2018.