Date of Award

2009

Degree Type

Thesis

Degree Name

Master of Engineering Science

Program

Electrical and Computer Engineering

Supervisor

Dr. Rajni Patel

Second Advisor

Dr. Christopher M Schlachta

Third Advisor

Dr. Michael Naish

Abstract

Minimally invasive surgery training is complicated by the restraints imposed by the surgical environment. A sensorized laparoscopic instrument capable of sensing force in 5 degrees of freedom and position in 6 degrees of freedom was evaluated. Novice and Expert laparoscopists performed a complex minimally invasive surgical task - suturing - using the novel instruments. Their force and position profiles were compared. The novel minimally invasive surgical instrument is construct-valid and capable of detecting differences between novices and experts in a laparoscopic suturing task with respect to force and position. It is also concurrently valid with an existing standard: the Fundamentals of Laparoscopic Skills. Further evaluation is mandated to better understand the ability to predict performance based on force and position as well as the potential for new metrics in minimally invasive surgical education.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.