Date of Award
2008
Degree Type
Thesis
Degree Name
Master of Engineering Science
Program
Electrical and Computer Engineering
Supervisor
Dr. K. Adamiak
Second Advisor
Dr. G.S.P. Castle
Abstract
The purpose of this research was to investigate the dynamics of induction charging for spherical particles assuming finite volume and surface conductivities, and arbitrary particle permittivity. All results, presented in this thesis, were based on numerical simulations on the COMSOL commercial software using the Finite Element Method. Simulations were performed for a conducting spherical particle with finite surface conductivity. The particle was resting on a ground electrode and exposed to an external electric field. The model was then extended to investigate multiple spherical particles stacked in an arbitrary pattern structure. Saturation charge and actual charging time constant were investigated. The rate of charge accumulation was affected significantly by the particle’s volume and surface conductivities, contact area with the ground electrode, and electric shielding due to proximity of stacked particles. To a less extent, the actual charging time was affected by particle permittivity. Furthermore, shielding the electric field from a given particle reduced its saturation charge significantly.
Recommended Citation
Nader, Bassem F., "DYNAMIC MODELS FOR INDUCTION CHARGING OF SPHERICAL PARTICLES WITH SURFACE CONDUCTIVITY" (2008). Digitized Theses. 4153.
https://ir.lib.uwo.ca/digitizedtheses/4153