Date of Award

2009

Degree Type

Thesis

Degree Name

Master of Science

Program

Computer Science

Supervisor

Hanan

Abstract

Ubiquitous applications collect contextual information, process it, and then use this derived data to deliver valuable services. Location is one these contexts, and has been significant in providing navigation and guidance services for GPS devices. However, GPS is designed for outdoor use and is not precise enough, in terms of location accuracy for indoor applications.

There are many indoor location systems that rely on a single technology, but these systems are either inaccurate in uncontrolled environments or require the installation of a dedicated infrastructure. This has led to the investigation of hybrid systems. This thesis examines the creation of a hybrid indoor positioning system combining different tech­ nologies and techniques; Wi-Fi access points and their associated signal strength, image analysis using machine learning to create location specific scene classifiers, and an altimeter sensor to determine the user's current floor. This system is meant to provide indoor positioning data to location-aware applications.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.