Date of Award
2010
Degree Type
Thesis
Degree Name
Master of Engineering Science
Program
Electrical and Computer Engineering
Supervisor
Dr. Abdallah Shami
Abstract
Software Defined Radios have brought a major reformation in the design standards for radios, in which a large portion of the functionality is implemented through pro grammable signal processing devices, giving the radio the ability to change its op erating parameters to accommodate new features and capabilities. A software radio approach reduces the content of radio frequency and other analog components of the traditional radios and emphasizes digital signal processing to enhance overall receiver flexibility. Field Programmable Gate Arrays (FPGA) are a suitable technology for the hardware platform as they offer the potential of hardware-like performance coupled with software-like programmability.
Software defined radio is a very broad field, encompassing the design of various technologies all the way from the antenna to RF, IF, and baseband digital design. The RF section primarily consists of analog hardware modules. The IF and baseband sections are primarily digital. It is the general process of the radio to convert the incoming signal from RF to IF and then IF to baseband for better signal processing system.
In this thesis, some of major building blocks of a Software defined radio are de signed and implemented using FPGAs. The design of a Digital front end, which provides the bridge between the baseband and analog RF portions of a wireless receiver, is synthesized. The Digital front end receiver consists of a digital down converter(DDC) which in turn comprises of a direct digital frequency synthesizer (DDFS), a phase accumulator and a low pass filter. The signal processing block
of the DDFS is executed using Co-ordinate Rotation Digital Computer (CORDIC) iii
Abstract
algorithm. Cascaded-Integrator-Comb filters (CIC) are implemented for changing the sample rate of the incoming data. Application of a DDC includes software ra dios, multicarrier, multimode digital receivers, micro and pico cell systems,broadband data applications, instrumentation and test equipment and in-building wireless tele phony. Also, in this thesis, interfaces for connecting Texas Instruments high speed and high resolution Analog-to-Digital converters (ADC) and Digital-to-Analog converters (DAC) with Xilinx Virtex-5 FPGAs are also implemented and demonstrated.
Recommended Citation
Balakrishnan, Mahadevan, "Design and Implementation of an RF Front-End for Software Defined Radios" (2010). Digitized Theses. 3730.
https://ir.lib.uwo.ca/digitizedtheses/3730