Date of Award
2010
Degree Type
Thesis
Degree Name
Master of Engineering Science
Program
Electrical and Computer Engineering
Supervisor
Dr. Gerry Moschopoulos
Second Advisor
Dr. Amimaser Yazdani
Abstract
Dc-ac inverters convert a dc input voltage into a desired ac output voltage and are widely used in many industrial applications, including utility grid interfaces, motor drives, and wind energy systems. Because of their widespread use, there has been considerable interest to try to make them more efficient to conserve energy. One way of doing so is to reduce the losses that are generated by the switching of the inverter devices as they help convert the dc input voltage into an ac output. As a result, there has been considerable research into implementing inverters with so-called soft-switching - zero-voltage and zero-current switching techniques that make either the voltage across a switch or the current through it zero at the time of a switching transition (from on to off or off to on). Since the power dissipated in a switch is related to the amount of overlap of voltage and current during a switching transition, making either the switch voltage or switch current zero at this time can result in a significant reduction in switching losses.
A new, reduced switch, zero-voltage switching (ZVS), three-phase dc-ac inverter is proposed in this thesis. The proposed inverter does not have the drawbacks that other previously proposed ZVS-PWM inverters have such as cost, increased conduction losses, the appearance of distortion in the output waveforms, and the lack of bidirectional operation capability. In the thesis, an extensive literature review of previously proposed soft-switched inverters is performed. The new inverter is then presented and its operation is explained in detail. The steady-state operation of the new inverter is analyzed and the
results of the analysis are used to determine the converter's steady-state characteristics. Based on these characteristics, a procedure for the design of the inverter is developed and then demonstrated with an example. Finally, the feasibility of the proposed converter and the validity of the analysis are confirmed with simulation results obtained from PSIM, a widely used, commercially available software simulation package for power electronics
Recommended Citation
Alam, Md. Muntasir-Ul, "A NEW REDUCED SWITCH ZVS-PWM THREE-PHASE INVERTER" (2010). Digitized Theses. 3700.
https://ir.lib.uwo.ca/digitizedtheses/3700