Date of Award

2006

Degree Type

Thesis

Degree Name

Master of Engineering Science

Program

Electrical and Computer Engineering

Supervisor

Dr. Vijay Parsa

Abstract

ABSTRACT

In this thesis, the application of a subband adaptive model to characterize compression behaviour of five digital hearing aids is investigated. Using a signal-to-error ratio metric, modeling performance is determined by varying the number of analysis bands in the subband structure as well as consideration of three adaptive algorithms. The normalized least mean-squares (NLMS), the affine projection algorithm (APA), and the recursive least-squares (RLS) algorithms are employed using a range of parame­ters to determine the impact on modeling performance. Using the subband adaptive model to estimate the time-varying frequency response of each hearing aid allows the Perceptual Evaluation of Speech Quality (PESQ) mean-opinion score (MOS) to be computed. The PESQ MOS facilitates an estimation of a subjective assessment of speech quality using an objective score. Initial results suggest the PESQ MOS score is able to differentiate speech processed by hearing aids allowing them to be ranked accordingly. Further work is required to obtain subjective assessments of the processed speech signals and determine if possible correlations exist.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.