Date of Award

2008

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Program

Statistics and Actuarial Sciences

Supervisor

A.I. McLeod

Abstract

Three topics in the analysis of microarray genomic data are discussed and improved statistical methods are developed in each case. A statistical test with higher power is developed for detecting periodicity in microarray time series data. Periodicity in short series, with non-Fourier frequencies, is detected through a Pearson curve calibrated to the null distribution obtained by computer simulation. Unlike other traditional methods, this approach is applicable even in the presence of missing values or unequal time intervals. The usefulness of the new method is demonstrated on simulated series as well as actual microarray time series.

The second topic develops a new method for detection of changes in DNA or gene copy number. Regions for DNA copy number aberrations in chromosomal material are detected using maximum overlapping discrete wavelet transform (MODWT). It is shown how repeated application of MODWT to a series can be used to confirm the presence of change points. Application to simulated as well as array CGH (Comparative Genomic Hybridization) data confirms the excellent performance of this method. In the third topic, it is shown that an improved class predictor for tissue samples in microarray experiments is developed by incorporating nearest neighbour covariates (NNC). It is demonstrated that this method reduces the mis-classification errors in both simulated and actual microarray data.

Comments

At the request of A.I. McLeod

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.