Dentistry Publications

Nano-TiO2-enriched biocompatible polymeric powder coatings: Adhesion, thermal and biological characterizations

Document Type

Article

Publication Date

1-1-2014

Journal

Advanced Materials Research

Volume

995

First Page

113

Last Page

124

URL with Digital Object Identifier

10.4028/www.scientific.net/AMR.995.113

Abstract

The success of orthopedic and dental implants largely depends on their biocompatibility with the surrounding body environment and the biocompatibility depends on the physical, chemical, mechanical, topographical and biological properties of the implant materials chosen. Since the last few decades, titanium and its alloys have been among the most widely used ones due to their superior biocompatibility and mechanical properties; however, pure titanium needs to be pre and/or post treated chemically or physically to maintain appropriate textures and surface roughness. In the present study, TiO2 nanoparticles incorporated polymeric powder coatings consisting of smooth and micro-nano scale roughness were developed that exhibited biocompatibility towards Human Embryonic Palatial Mesenchymal (HEPM) Cells. In addition, an experimental set up was designed and executed to evaluate the adhesion/ bond strength of the coating and to measure the load bearing capacity that the coatings can withstand before being detached from the substrate. Coating's topographical features were analyzed by using Scanning Electron Microscopy (SEM). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were performed to evaluate the thermal stability of the coating materials. © (2014) Trans Tech Publications, Switzerland.

This document is currently not available here.

Share

COinS