Location
London
Event Website
http://www.csce2016.ca/
Description
Engineers need a simplified procedure to predict the residual axial capacity and stiffness of Reinforced Concrete (RC) columns exposed to a complete heating-cooling cycle. Finite difference heat transfer and sectional analysis models are developed to determine the axial behavior of such columns with various end-restraint conditions at different fire durations. The influence of cooling phase on temperature distribution and residual mechanical properties are considered in the analysis. The ability of the model to predict the axial behavior of the damaged columns is validated in view of related experimental studies and shown to be in very good agreement. A parametric study is then conducted to assess the axial performance of fire-damaged RC columns. A procedure is proposed to determine the residual strength and stiffness of fire-damaged RC columns in typical frame structures.
Included in
STR-898: RESIDUAL AXIAL BEHAVIOR OF FIRE-DAMAGED REINFORCED CONCRETE COLUMNS
London
Engineers need a simplified procedure to predict the residual axial capacity and stiffness of Reinforced Concrete (RC) columns exposed to a complete heating-cooling cycle. Finite difference heat transfer and sectional analysis models are developed to determine the axial behavior of such columns with various end-restraint conditions at different fire durations. The influence of cooling phase on temperature distribution and residual mechanical properties are considered in the analysis. The ability of the model to predict the axial behavior of the damaged columns is validated in view of related experimental studies and shown to be in very good agreement. A parametric study is then conducted to assess the axial performance of fire-damaged RC columns. A procedure is proposed to determine the residual strength and stiffness of fire-damaged RC columns in typical frame structures.
https://ir.lib.uwo.ca/csce2016/London/Structural/57