Event Title
Location
London
Event Website
http://www.csce2016.ca/
Description
Preeminent effectiveness and feasibility of dispersants have been the key reasons for their widely serving as the response agents in oil spill responses. Moreover, dispersants can also overcome the limitation factors of other countermeasures like accessibility, weather conditions, sea states, and oil thickness. However, the public concerns of the usages of the chemically synthetic dispersants are also essential due to their toxicity and persistency in the ecosystem. Bio-dispersants can be a promising alternative as the proven features of lower toxicity and persistency while with high effectiveness, but its broad application prospects are currently restricted by the high production cost that is 3-10 times more than chemical synthetic ones because of the low productivity. Thus, a hyper bio-dispersant producer will be the desired coping strategy.
An isolated bio-dispersant producer from NL offshore, Rhodococcus erythropolis strain P6-4P was selected for generating high-yielding producers by mutation. After UV mutagenesis, 21 enhanced mutants were selected through oil spreading screening method. Further productivity quantify test of critical micelle dilution (CMD) with higher resolution was conducted to these mutants. An outstanding mutant showed CMD as high as 225 while 15.4 is the CMD of the wild type strain, which means the new mutant is 14.6 times increase. The 16S rDNA sequencing results revealed that the 16 S ribosomal DNA of the mutant 100% matched with the original strain indicating the mutation occurred on other parts of the genome which will be identified through next-generation sequencing and comparative analysis in the future study. This mutated high-yielding strain was capable to significantly improve the production rate and the total yield of bio-dispersants. The yield of crude bio-dispersant was 54g per liter with 6 days incubation. At 4mg/uL crude product/crude oil ratio, the dispersion effectiveness was found comparable to Corexit 9500A at 1:25 (dispersant/crude oil ratio). Future works on further mutagenesis base on this new high-producing strain by novel mutation methods were also discussed.
Included in
ENV-624: A NEW HIGH-YIELDING BIO-DISPERSANT PRODUCER MUTATED FROM RHODOCOCCUS ERYTHROPOLIS STRAIN P6-4P
London
Preeminent effectiveness and feasibility of dispersants have been the key reasons for their widely serving as the response agents in oil spill responses. Moreover, dispersants can also overcome the limitation factors of other countermeasures like accessibility, weather conditions, sea states, and oil thickness. However, the public concerns of the usages of the chemically synthetic dispersants are also essential due to their toxicity and persistency in the ecosystem. Bio-dispersants can be a promising alternative as the proven features of lower toxicity and persistency while with high effectiveness, but its broad application prospects are currently restricted by the high production cost that is 3-10 times more than chemical synthetic ones because of the low productivity. Thus, a hyper bio-dispersant producer will be the desired coping strategy.
An isolated bio-dispersant producer from NL offshore, Rhodococcus erythropolis strain P6-4P was selected for generating high-yielding producers by mutation. After UV mutagenesis, 21 enhanced mutants were selected through oil spreading screening method. Further productivity quantify test of critical micelle dilution (CMD) with higher resolution was conducted to these mutants. An outstanding mutant showed CMD as high as 225 while 15.4 is the CMD of the wild type strain, which means the new mutant is 14.6 times increase. The 16S rDNA sequencing results revealed that the 16 S ribosomal DNA of the mutant 100% matched with the original strain indicating the mutation occurred on other parts of the genome which will be identified through next-generation sequencing and comparative analysis in the future study. This mutated high-yielding strain was capable to significantly improve the production rate and the total yield of bio-dispersants. The yield of crude bio-dispersant was 54g per liter with 6 days incubation. At 4mg/uL crude product/crude oil ratio, the dispersion effectiveness was found comparable to Corexit 9500A at 1:25 (dispersant/crude oil ratio). Future works on further mutagenesis base on this new high-producing strain by novel mutation methods were also discussed.
https://ir.lib.uwo.ca/csce2016/London/Environmental/13