Civil and Environmental Engineering Publications

OPTIMIZED CHAOTIC HEAT EXCHANGER CONFIGURATIONS FOR PROCESS INDUSTRY: A NUMERICAL STUDY

Document Type

Conference Proceeding

Publication Date

2014

Journal

PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING 2013

Volume

1B: SYMPOSIA

URL with Digital Object Identifier

https://doi.org/10.1115/FEDSM2013-16115

Abstract

A numerical investigation of chaotic laminar flow and heat transfer in isothermal-wall square-channel configurations is presented. The computations, based on a finite-volume method with the SIMPLEC algorithm, are conducted in terms of Peclet numbers ranging from 7 to 7x10(5). The geometries, based on the split-and-recombine (SAR) principle, are first proposed for micromixing purposes, and are then optimized and scaled up to three-dimensional minichannels with 3-mm sides that are capable of handling industrial fluid manipulation processes. The aim is to assess the feasibility of this mass- and heat-transfer technique for out-of-laboratory commercial applications and to compare different configurations from a process intensification point of view. The effects of the geometry on heat transfer and flow characteristics are examined. Results show that the flux recombination phenomenon mimicking the baker's transform in the SAR-1 and SAR-2 configurations produces chaotic structures and promotes mass transfer. This phenomenon also accounts for higher convective heat transfer exemplified by increased values of the Nusselt number compared to the chaotic continuous-flow configuration and the baseline plain square-duct geometry. Energy expenditures are explored and the overall heat transfer enhancement factor for equal pumping power is calculated. The SAR-2 configuration reveals superior heat-transfer characteristics, enhancing the global gain by up to 17-fold over the plain duct heat exchanger.

This document is currently not available here.

Share

COinS