Civil and Environmental Engineering Publications
Document Type
Article
Publication Date
2-1-2023
Journal
Journal of Applied Meteorology and Climatology
Volume
62
Issue
2
First Page
139
URL with Digital Object Identifier
10.1175/JAMC-D-22-0070.1
Last Page
154
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Abstract
Historical tornado events from 1982 to 2020 were documented within Canada’s forested regions using high-resolution satellite imagery. Tornado forest disturbances were identified using a three-step process: 1) detecting, 2) assessing, and 3) dating each event. A grid of 120 km 3 120 km boxes was created covering Canada (excluding the extreme north). Of the 484 boxes, 367 were manually searched. Once a long, narrow region of tree damage was detected, it was first cross-referenced with known tornado databases to ensure it was a unique event. Once events were classified as either tornadic or downburst, the coordinates of the start, worst damage, and end locations were documented, as well as the direction of motion, damage indicators, degree of damage, estimated maximum wind speed, and F/EF-scale rating. In total, 231 previously unknown tornadoes were identified. In Ontario, 103 events were discovered, followed by 98 in Quebec, 9 in Manitoba, 6 in Saskatchewan, 9 in Alberta, 5 in British Columbia, and 1 in New Brunswick. The largest number of discovered tornadoes occurred in 2015, and the largest number of strong F2 tornadoes occurred in 2005. Most of the discovered tornadoes occurred in July for both F/EF1 and F/EF2 ratings. Most tornado tracks had widths between 200 and 400 m, and more than 50% of the tornadoes had a pathlength of less than 10 km. Of all the events that were discov-ered, 125 events could be fully dated, 19 were dated only by month, 41 were dated only by year, and 46 remained undated.