Civil and Environmental Engineering Publications

Document Type

Article

Publication Date

9-30-2022

Journal

AIMS Materials Science

Volume

9

Issue

5

First Page

750

URL with Digital Object Identifier

https://doi.org/10.3934/matersci.2022046

Last Page

769

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Abstract

Corrosion of steel bars is the main cause of the deterioration of reinforced concrete (RC) structures. To avoid this problem, steel rebars can be replaced with glass-fiber-reinforced-polymer (GFRP). However, the brittle behaviour of GFRP RC elements has limited their use in many applications. The use of shape memory alloy (SMA) and/or stainless steel (SS) rebars can solve this problem, because of their ductile behaviour and corrosion resistance. However, their high price is a major obstacle. To address issues of ductility, corrosion, and cost, this paper examines the hybrid use of GFRP, SS, and SMA in RC frames. The use of SMA provides an additional advantage as it reduces seismic residual deformations. Three frames were designed. A steel RC frame, SS-GFRP RC frame, and SMA-SS-GFRP RC frame. The design criteria for the two GFRP RC frames followed previous research by the authors, which aimed at having approximately equal lateral resistance, stiffness, and ductility for GFRP and steel RC frames. The three frames were then analyzed using twenty seismic records. Their seismic performance confirmed the success of the adopted design methodology in achieving corrosion-free frames that provide adequate seismic performance.

Citation of this paper:

Mohamed E. Meshaly, Maged A. Youssef, Ahmed A. Elansary. Seismic performance of ductile corrosion-free reinforced concrete frames[J]. AIMS Materials Science, 2022, 9(5): 750-769. doi: 10.3934/matersci.2022046

Find in your library

Share

COinS