Civil and Environmental Engineering Publications
Document Type
Article
Publication Date
12-24-2022
Journal
Fire
Volume
6
Issue
1
URL with Digital Object Identifier
https://doi.org/10.3390/fire6010005
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Abstract
Fire accidents are a significant risk to human life and civil infrastructure. As a countermeasure, the regulatory bodies of different countries have established standards for evaluating the performance of construction elements during fire exposure. ISO 834 is the globally accepted fire-resistance testing standard. Other standards include ASTM E119, BS 476, IS 3809, JIS A 1304, AS 1503, EN 1363, and GB/T 9978, which are utilized by the US, Britain, India, Japan, Australia, Europe, and China, respectively. This article presents a summary and comparison of the fire-resistance testing standards. In reality, standard tests for isolated structural members may not efficiently portray realistic fire scenarios due to the fire location, its intensity, etc. Thus, researchers have utilized a variety of specialized setups and full-scale non-standard fire tests to fulfill their research objectives. The article includes a summary of selected full-scale, ad hoc, and specialized setups that were reported in the literature. The article highlights the need for timely updates of fire standards to accommodate the testing of newly developed construction materials, structural systems, and possible regional fire scenarios. The article also identifies the research areas that require significant focus in experimental structural fire-resistant testing.
Citation of this paper:
Chaturvedi, S.; Vedrtnam, A.; Youssef, M.A.; Palou, M.T.; Barluenga, G.; Kalauni, K. Fire-Resistance Testing Procedures for Construction Elements—A Review. Fire 2023, 6, 5. https://doi.org/10.3390/fire6010005