Civil and Environmental Engineering Publications

Document Type

Article

Publication Date

12-6-2021

Journal

Wind and Structures

Volume

33

Issue

6

First Page

447

URL with Digital Object Identifier

https://doi.org/10.12989/was.2021.33.6.447

Last Page

462

Abstract

High spatial and temporal surface pressure measurements were carried out in the state-of-the-art tornado simulator, the Wind Engineering, Energy and Environment (WindEEE) Dome, to explore the characteristics of stationary and translating tornado-like vortices (TLV) for a wide range of swirl ratios (𝑆=0.21 to 1.03). The translational speed of the TLV and the surface roughness were varied to examine their effects on tornado ground pressures, wandering, and vortex structure. It was found that wandering is more pronounced at low swirl ratios and has a substantial effect on the peak pressure magnitude for stationary TLV (error percentage ≀ 35%). A new method for removing wandering was proposed which is applicable for a wide range of swirl ratios. For translating TLV, the near-surface part lagged behind the top of the vortex, resulting in a tilt of the tornado vertical axis at higher translating speeds. Also, a veering motion of the tornado base towards the left of the direction of the translation was observed. Wandering was less pronounced for higher translation speeds. Increasing the surface roughness caused an analogous effect as lowering the swirl ratio.

Notes

WindEEE Research Institute, Western University

Find in your library

Share

COinS