Civil and Environmental Engineering Publications
Document Type
Article
Publication Date
2016
Journal
Journal of Constructional Steel Research
Volume
125
First Page
239
URL with Digital Object Identifier
https://doi.org/10.1016/j.jcsr.2016.06.019
Last Page
251
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Abstract
Steel structures dissipate the seismic energy through steel yielding, which results in residual deformations. Although conventional earthquake-resisting structural systems provide adequate seismic safety, they experience significant structural damage when exposed to strong ground shaking. Seismic residual drifts complicate the repair of damaged structures or render the structure as irreparable. Therefore, systems that can minimize the seismic residual deformations are needed. Superelastic shape memory alloys (SMAs) have the ability to undergo large deformations and recover all plastic deformations upon unloading. Their utilization in steel structures can significantly reduce seismic residual deformations, which will facilitate post-seismic retrofitting. Although the literature provides few research data on using SMA in steel beam-column connections, previous research did not address their optimum use. This paper identifies the required locations of SMA connections in a typical steel moment resisting frame to enhance its seismic performance in terms of maximum inter-storey drift, residual deformations, and damage scheme.