Civil and Environmental Engineering Publications
Document Type
Article
Publication Date
2018
Journal
Bulletin of Earthquake Engineering
Volume
16
Issue
11
First Page
5503
URL with Digital Object Identifier
https://doi.org/10.1007/s10518-018-0394-9
Last Page
5527
Abstract
The demand for modular steel buildings (MSBs) has increased because of the improved quality, fast on-site installation, and lower cost of construction. Steel braced frames are usually utilized to form the lateral load resisting system of MSBs. During earthquakes, the seismic energy is dissipated through yielding of the components of the braced frames, which results in residual drifts. Excessive residual drifts complicate the repair of damaged structures or render them irreparable. Researchers have investigated the use of superelastic shape memory alloys (SMAs) in steel structures to reduce the seismic residual deformations. This study explores the potential of using SMA braces to improve the seismic performance of typical modular steel braced frames. The study utilizes incremental dynamic analysis to judge on the benefits of using such a system. It is observed that utilizing superelastic SMA braces at strategic locations can significantly reduce the inter-storey residual drifts.