Civil and Environmental Engineering Publications
Pulsating flow for mixing intensification in a twisted curved pipe
Document Type
Conference Proceeding
Publication Date
2007
Journal
FEDSM 2007: PROCEEDINGS OF THE 5TH JOINT AMSE/JSME FLUIDS ENGINEERING SUMMER CONFERENCE
Volume
1, PTS A AND B
First Page
1455
Last Page
1464
Abstract
This work concerns the manipulation of a twisted curved pipe flow for mixing enhancement. Previous work [1,2,3] has shown that geometrical perturbations to a curved pipe flow can increase mixing and heat transfer by chaotic advection. In this work the flow entering the twisted pipe undergoes a pulsatile motion. The flow was studied experimentally and numerically. The numerical study is carried out by CFD code (Fluent 6) in which a pulsated velocity Field is imposed as an inlet condition. The experimental setup involves principally a "Scotch-yoke" pulsatile generator and a twisted curved pipe. Laser Doppler velocimetry (LDV) measurements have shown that the Scotch-yoke generator produces pure sinusoidal instantaneous mean velocities with a mean deviation of 3%. Visualizations by laser-induced fluorescence (LIF) and velocity measurements, coupled with the numerical results. have permitted analysis of the evolution of the swirling secondary flow structures that develop along the bends during the pulsation phase. These measurements were made for a range of steady Reynolds number (300 <= Re-st <= 1200), frequency parameter (1 <= alpha = r(0).(omega/nu)(1/2) < 20), and two velocity components ratios (beta = U-max.osc/U-st). We observe satisfactory agreement between the numerical and experimental results. For high beta, the secondary flow structure is modified by a Lyne instability and a siphon effect during the deceleration phase. The intensity of the secondary flow decreases as the parameter alpha increases during the acceleration phase. During the deceleration phase, under the effect of reverse flow, the secondary flow intensity increases with the appearance of Lyric flow. Experimental results also show that pulsating flow through a twisted curved pipe increases mixing over the steady twisted curved pipe. This mixing enhancement increases with beta.