Chemistry Publications

Document Type

Article

Publication Date

Fall 9-29-2017

Journal

Inorganic Chemistry

Volume

56

URL with Digital Object Identifier

DOI: 10.1021/acs.inorgchem.7b01907

Abstract

The synthesis and characterization of a new family of phosphine-oxide-supported aluminum formazanate complexes (7a, 7b, 8a, 9a) are reported. X-ray diffraction studies revealed that the aluminum atoms in the complexes adopt an octahedral geometry in the solid state. The equatorial positions are occupied by an N2O23‒ formazanate ligand, and the axial positions are occupied by L-type phosphine oxide donors. UV-vis absorption spectroscopy revealed that the complexes were strongly absorbing (ε ~ 30,000 M‒1 cm‒1) between 500 and 700 nm. The absorption maxima in this region were simulated using time-dependent density-functional theory. With the exception of 3-cyano substituted complex 7b, which showed maximum luminescence intensity in the presence of excess phosphine oxide, the title complexes are non-emissive in solution and the solid state. The electrochemical properties of the complexes were probed using cyclic voltammetry. Each complex underwent sequential one-electron oxidations in potential ranges of ‒0.12 to 0.29 V and 0.62 to 0.97 V, relative to the ferrocene/ferrocenium redox couple. Electrochemical reduction events were observed at potentials between ‒1.34 and ‒1.75 V. When combined with tri-n-propylamine as a coreactant, complex 7b acted as an electrochemiluminescence emitter with a maximum electrochemiluminescence intensity at a wavelength of 735 nm, red-shifted relative to the photoluminescence maximum of the same compound.

Available for download on Monday, October 01, 2018

Find in your library

Included in

Chemistry Commons

Share

COinS