Chemistry Publications
Document Type
Article
Publication Date
11-14-2022
Journal
Analytical chemistry
Volume
94
URL with Digital Object Identifier
10.1021/acs.analchem.2c04141
Abstract
Events taking place during electrospray ionization (ESI) can trigger the self-assembly of various nanoclusters. These products are often dominated by magic number clusters (MNCs) that have highly symmetrical structures. The literature rationalizes the dominance of MNCs by noting their high stability. However, this argument is not necessarily adequate because thermodynamics cannot predict the outcome of kinetically controlled reactions. Thus, the mechanisms responsible for MNC dominance remain poorly understood. Molecular dynamics (MD) simulations can provide atomistic insights into self-assembly reactions, but even this approach has thus far failed to provide pertinent answers. The current work overcomes this limitation. We focused on salt clusters formed from aqueous NaCl solutions during ESI. The corresponding mass spectra are dominated by the Na