Chemistry Publications

Document Type

Article

Publication Date

2021

Journal

Welding in the World

URL with Digital Object Identifier

http://doi.org/10.1007/s40194-021-01189-x

Abstract

Welding fumes have been found to be carcinogenic and stainless steel welders may be at higher risk due to increased formation of hexavalent chromium (Cr(VI)). The slag-shielded methods, identified to generate most airborne particles and Cr(VI), would potentially be most harmful. With ever-stricter limits set to protect workers, measures to minimize human exposure become crucial. Austenitic stainless steel flux-cored wires of 316L type have been developed with the aim to reduce the toxicity of the welding fume without compromised usability. Collected particles were compared with fumes formed using solid, metal-cored and standard flux-cored wires. In Part 1, the new wires were concluded to have improved weldability, to generate even less Cr(VI) in wt.-% than with solid wire and to be less acute toxic in cultured human bronchial epithelial cells as compared to standard flux-cored wires. In Part 2, two additional institutes created fume emission datasheets for the same wires for correlation with the fume data obtained in Part 1. The reported values showed large variations between the three laboratories, having a significant effect on the standard deviation. This is suggested to be the result of different welding parameters and various ways to collect and analyze the fume. More stringent specifications on parameter settings and fume collection would be required to increase the accuracy. This means that at present, it may not be possible to compare fume data on datasheets from two different wire producers and care should be taken in interpretation of values given in the available literature. Nevertheless, the laboratories confirmed the same trends for Cr(VI) as presented in Part 1.

Find in your library

Included in

Chemistry Commons

Share

COinS