Document Type
Article
Publication Date
1-15-2017
Journal
NeuroImage
Volume
145
First Page
304
Last Page
313
URL with Digital Object Identifier
10.1016/j.neuroimage.2015.11.059
Abstract
Decoding the contents of consciousness from brain activity is one of the most challenging frontiers of cognitive neuroscience. The ability to interpret mental content without recourse to behavior is most relevant for understanding patients who may be demonstrably conscious, but entirely unable to speak or move willfully in any way, precluding any systematic investigation of their conscious experience. The lack of consistent behavioral responsivity engenders unique challenges to decoding any conscious experiences these patients may have solely based on their brain activity. For this reason, paradigms that have been successful in healthy individuals cannot serve to interpret conscious mental states in this patient group. Until recently, patient studies have used structured instructions to elicit willful modulation of brain activity according to command, in order to decode the presence of willful brain-based responses in this patient group. In recent work, we have used naturalistic paradigms, such as watching a movie or listening to an audio-story, to demonstrate that a common neural code supports conscious experiences in different individuals. Moreover, we have demonstrated that this code can be used to interpret the conscious experiences of a patient who had remained non-responsive for several years. This approach is easy to administer, brief, and does not require compliance with task instructions. Rather, it engages attention naturally through meaningful stimuli that are similar to the real-world sensory information in a patient's environment. Therefore, it may be particularly suited to probing consciousness and revealing residual brain function in highly impaired, acute, patients in a comatose state, thus helping to improve diagnostication and prognostication for this vulnerable patient group from the critical early stages of severe brain-injury.