Document Type
Conference Proceeding
Publication Date
1-1-2015
Journal
Proceedings of SPIE - The International Society for Optical Engineering
Volume
9681
URL with Digital Object Identifier
10.1117/12.2207971
Abstract
Recent evidence suggests that healthy brain is organized on large-scale in regions spatially distant and partially temporally synchronized. These regions commonly are called Resting State Networks (RSNs). Many RSNs has been identified in multiples spatial scales in healthy subjects and their interactions has been used to define the functional network connectivity (FNC). The main idea in FNC is that the dynamic shown in the interactions among RSNs in control subjects, can change in pathological and pharmacological conditions. However, this hypothesis assumes that functional structure of healthy brain, remains in other brain states or conditions. In this work, we proposed a novel methodology in order to find the new brain functional structure for disorders of consciousness conditions, based on multi-objective optimization approach. Particularly, we find the best partition of RSNs set, that maximize two modularity measures (Kapur and Otsu measures). Our results suggest that the brain segregation level, may be linked to consciousness level.