Joint sparse representation of brain activity patterns in multi-task fMRI data

Document Type

Article

Publication Date

1-1-2015

Journal

IEEE Transactions on Medical Imaging

Volume

34

Issue

1

First Page

2

Last Page

12

URL with Digital Object Identifier

10.1109/TMI.2014.2340816

Abstract

A single-task functional magnetic resonance imaging (fMRI) experiment may only partially highlight alterations to functional brain networks affected by a particular disorder. Multivariate analysis across multiple fMRI tasks may increase the sensitivity of fMRI-based diagnosis. Prior research using multi-task analysis in fMRI, such as those that use joint independent component analysis (jICA), has mainly assumed that brain activity patterns evoked by different tasks are independent. This may not be valid in practice. Here, we use sparsity, which is a natural characteristic of fMRI data in the spatial domain, and propose a joint sparse representation analysis (jSRA) method to identify common information across different functional subtraction (contrast) images in data from a multi-task fMRI experiment. Sparse representation methods do not require independence, or that the brain activity patterns be nonoverlapping. We use functional subtraction images within the joint sparse representation analysis to generate joint activation sources and their corresponding sparse modulation profiles. We evaluate the use of sparse representation analysis to capture individual differences with simulated fMRI data and with experimental fMRI data. The experimental fMRI data was acquired from 16 young (age: 19-26) and 16 older (age: 57-73) adults obtained from multiple speech comprehension tasks within subjects, where an independent measure (namely, age in years) can be used to differentiate between groups. Simulation results show that this method yields greater sensitivity, precision, and higher Jaccard indexes (which measures similarity and diversity of the true and estimated brain activation sources) than does the jICA method. Moreover, superiority of the jSRA method in capturing individual differences was successfully demonstrated using experimental fMRI data.

This document is currently not available here.

Share

COinS