Document Type
Article
Publication Date
6-9-2021
Journal
Journal of Neuroscience
Volume
41
Issue
23
First Page
5045
Last Page
5055
URL with Digital Object Identifier
10.1523/JNEUROSCI.2715-20.2021
Abstract
Many older listeners have difficulty understanding speech in noise, when cues to speech-sound identity are less redundant. The amplitude envelope of speech fluctuates dramatically over time, and features such as the rate of amplitude change at onsets (attack) and offsets (decay), signal critical information about the identity of speech sounds. Aging is also thought to be accompanied by increases in cortical excitability, which may differentially alter sensitivity to envelope dynamics. Here, we recorded electroencephalography in younger and older human adults (of both sexes) to investigate how aging affects neural synchronization to 4 Hz amplitude-modulated noises with different envelope shapes (ramped: Slow attack and sharp decay; damped: Sharp attack and slow decay). We observed that subcortical responses did not differ between age groups, whereas older compared with younger adults exhibited larger cortical responses to sound onsets, consistent with an increase in auditory cortical excitability. Neural activity in older adults synchronized more strongly to rapid-onset, slow-offset (damped) envelopes, was less sinusoidal, and was more peaked. Younger adults demonstrated the opposite pattern, showing stronger synchronization to slow-onset, rapid-offset (ramped) envelopes, as well as a more sinusoidal neural response shape. The current results suggest that age-related changes in the excitability of auditory cortex alter responses to envelope dynamics. This may be part of the reason why older adults experience difficulty understanding speech in noise.