How do individual differences in children's domain specific and domain general abilities relate to brain activity within the intraparietal sulcus during arithmetic? An fMRI study

Document Type

Article

Publication Date

8-1-2017

Journal

Human brain mapping

Volume

38

Issue

8

First Page

3941

Last Page

3956

URL with Digital Object Identifier

10.1002/hbm.23640

Abstract

Previous research has demonstrated that children recruit the intraparietal sulcus (IPS) during arithmetic, which has largely been attributed to domain-specific processes such as quantity manipulations. However, the IPS has also been found to be important for domain-general abilities, such as visuo-spatial working memory (VSWM). Based on the current literature it is unclear whether individual differences in domain-specific skills, domain-general skills, or a combination of the two, are related to the recruitment of the IPS during arithmetic. This study examines how individual differences in both domain general and domain specific competencies relate to brain activity in the IPS during arithmetic, and whether the relationships are related to how brain activity is measured. In a sample of 44 school-aged children, we found that VSWM was only weakly related to a neural index of arithmetic complexity (neural problem size effect), whereas symbolic number processing skills (symbolic comparison and ordering) were related to overall arithmetic activity (both small and large problems). By simultaneously examining multiple domain-general and domain specific measures, we were also able to determine that symbolic skills were a stronger predictor of brain activity within the IPS than domain general skills such as VSWM and domain specific skills such as non-symbolic number processing. Together, these findings highlight that neural problem size effect may reflect different cognitive processes than brain activity across both small and large arithmetic problems, and that symbolic number processing skills are a critical predictor of variability in IPS activity during arithmetic. Hum Brain Mapp 38:3941-3956, 2017. © 2017 Wiley Periodicals, Inc.

This document is currently not available here.

Share

COinS