Drawing connections between white matter and numerical and mathematical cognition: a literature review
Document Type
Article
Publication Date
1-1-2015
Journal
Neuroscience and biobehavioral reviews
Volume
48
First Page
35
Last Page
52
URL with Digital Object Identifier
10.1016/j.neubiorev.2014.11.006
Abstract
In this review we examine white matter tracts that may support numerical and mathematical abilities and whether abnormalities in these pathways are associated with deficits in numerical and mathematical abilities. Diffusion tensor imaging (DTI) yields indices of white matter integrity and can provide information about the axonal organization of the brain. A growing body of research is using DTI to investigate how individual differences in brain microstructures relate to different numerical and mathematical abilities. Several tracts have been associated with numerical and mathematical abilities such as the superior longitudinal fasciculus, the posterior segment of the corpus callosum, inferior longitudinal fasciculus, corona radiata, and the corticospinal tract. Impairments in mathematics tend to be associated with atypical white matter structures within similar regions, especially in inferior parietal and temporal tracts. This systematic review summarizes and critically examines the current literature on white matter correlates of numerical and mathematical abilities, and provides directions for future research.