"Design of a parallel transmit head coil at 7T with magnetic wall distr" by Ian R O Connell, Kyle M Gilbert et al.
 

Design of a parallel transmit head coil at 7T with magnetic wall distributed filters.

Document Type

Article

Publication Date

4-1-2015

Journal

IEEE transactions on medical imaging

Volume

34

Issue

4

First Page

836

Last Page

845

URL with Digital Object Identifier

10.1109/TMI.2014.2370533

Abstract

Ultra-high field magnetic resonance imaging (MRI) scanners ( ≥ 7T) require radio-frequency (RF) coils to operate in the range of the electromagnetic spectrum where the effective wavelength in the tissue approaches the patient dimensions. Multi-channel transmit arrays, driven in parallel, have been developed to increase the transmit field (B1(+)) uniformity in this wavelength regime. However, the closely packed array elements interact through mutual coupling. This paper expands on the ability of a distributed planar filter (the "magnetic wall") to decouple individual elements in an entire array. A transmit RF coil suitable for neuroimaging at 7T was constructed. The transmit coil, composed of 10 individual surface coil elements, was decoupled with magnetic walls. A separate receive coil array was used for signal reception. The hardware and imaging performance of the transmit coil was validated with electromagnetic simulation, bench-top measurements, and in vivo MRI experiments. Analysis and measurements confirmed that the magnetic wall decoupling method provides high isolation between transmit channels, while minimally affecting the B1(+) field profiles. Electromagnetic simulations confirmed that the decoupling method did not correlate to local specific absorption rate (SAR) "hot spots" or increase local-to-global SAR fractions in comparison to previously reported 7T multi-channel transmit arrays employing different decoupling methods.

Notes

This article is paywalled - seek access through your institution's library

Find in your library

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 34
  • Usage
    • Abstract Views: 5
  • Captures
    • Readers: 30
see details

Share

COinS