Neural Correlates of Predictive Saccades.
Document Type
Article
Publication Date
8-1-2016
Journal
Journal of cognitive neuroscience
Volume
28
Issue
8
First Page
1210
Last Page
1227
URL with Digital Object Identifier
10.1162/jocn_a_00968
Abstract
Every day we generate motor responses that are timed with external cues. This phenomenon of sensorimotor synchronization has been simplified and studied extensively using finger tapping sequences that are executed in synchrony with auditory stimuli. The predictive saccade paradigm closely resembles the finger tapping task. In this paradigm, participants follow a visual target that "steps" between two fixed locations on a visual screen at predictable ISIs. Eventually, the time from target appearance to saccade initiation (i.e., saccadic RT) becomes predictive with values nearing 0 msec. Unlike the finger tapping literature, neural control of predictive behavior described within the eye movement literature has not been well established and is inconsistent, especially between neuroimaging and patient lesion studies. To resolve these discrepancies, we used fMRI to investigate the neural correlates of predictive saccades by contrasting brain areas involved with behavior generated from the predictive saccade task with behavior generated from a reactive saccade task (saccades are generated toward targets that are unpredictably timed). We observed striking differences in neural recruitment between reactive and predictive conditions: Reactive saccades recruited oculomotor structures, as predicted, whereas predictive saccades recruited brain structures that support timing in motor responses, such as the crus I of the cerebellum, and structures commonly associated with the default mode network. Therefore, our results were more consistent with those found in the finger tapping literature.
Notes
This article is free to read at the publisher's site