Document Type
Article
Publication Date
10-15-2014
Journal
Journal of neurophysiology
Volume
112
Issue
8
First Page
1815
Last Page
1824
URL with Digital Object Identifier
10.1152/jn.00291.2014
Abstract
It is currently unclear whether the brain plans movement kinematics explicitly or whether movement paths arise implicitly through optimization of a cost function that takes into account control and/or dynamic variables. Several cost functions are proposed in the literature that are very different in nature (e.g., control effort, torque change, and jerk), yet each can predict common movement characteristics. We set out to disentangle predictions of the different variables using a combination of modeling and empirical studies. Subjects performed goal-directed arm movements in a force field (FF) in combination with visual perturbations of seen hand position. This FF was designed to have distinct optimal movements for muscle-input and dynamic costs while leaving kinematic cost unchanged. Visual perturbations in turn changed the kinematic cost but left the dynamic and muscle-input costs unchanged. An optimally controlled, physiologically realistic arm model was used to predict movements under the various cost variables. Experimental results were not consistent with a cost function containing any of the control and dynamic costs investigated. Movement patterns of all experimental conditions were adequately predicted by a kinematic cost function comprising both visually and somatosensory perceived jerk. The present study provides clear behavioral evidence that the brain solves kinematic and mechanical redundancy in separate steps: in a first step, movement kinematics are planned; and in a second, separate step, muscle activation patterns are generated.