Cross-species comparison of anticipatory and stimulus-driven neck muscle activity well before saccadic gaze shifts in humans and nonhuman primates.

Document Type

Article

Publication Date

8-1-2015

Journal

Journal of neurophysiology

Volume

114

Issue

2

First Page

902

Last Page

913

URL with Digital Object Identifier

10.1152/jn.00230.2015

Abstract

Recent studies have described a phenomenon wherein the onset of a peripheral visual stimulus elicits short-latency (<100 >ms) stimulus-locked recruitment (SLR) of neck muscles in nonhuman primates (NHPs), well before any saccadic gaze shift. The SLR is thought to arise from visual responses within the intermediate layers of the superior colliculus (SCi), hence neck muscle recordings may reflect presaccadic activity within the SCi, even in humans. We obtained bilateral intramuscular recordings from splenius capitis (SPL, an ipsilateral head-turning muscle) from 28 human subjects performing leftward or rightward visually guided eye-head gaze shifts. Evidence of an SLR was obtained in 16/55 (29%) of samples; we also observed examples where the SLR was present only unilaterally. We compared these human results with those recorded from a sample of eight NHPs from which recordings of both SPL and deeper suboccipital muscles were available. Using the same criteria, evidence of an SLR was obtained in 8/14 (57%) of SPL recordings, but in 26/29 (90%) of recordings from suboccipital muscles. Thus, both species-specific and muscle-specific factors contribute to the low SLR prevalence in human SPL. Regardless of the presence of the SLR, neck muscle activity in both human SPL and in NHPs became predictive of the reaction time of the ensuing saccade gaze shift ∼70 ms after target appearance; such pregaze recruitment likely reflects developing SCi activity, even if the tectoreticulospinal pathway does not reliably relay visually related activity to SPL in humans.

Find in your library

Share

COinS