Document Type
Article
Publication Date
8-1-2005
Journal
Cerebral Cortex
Volume
15
Issue
8
First Page
1261
Last Page
1269
URL with Digital Object Identifier
https://doi.org/10.1093/cercor/bhi009
Abstract
A number of regions of the temporal and frontal lobes are known to be important for spoken language comprehension, yet we do not have a clear understanding of their functional role(s). In particular, there is considerable disagreement about which brain regions are involved in the semantic aspects of comprehension. Two functional magnetic resonance studies use the phenomenon of semantic ambiguity to identify regions within the fronto-temporal language network that subserve the semantic aspects of spoken language comprehension. Volunteers heard sentences containing ambiguous words (e.g. 'the shell was fired towards the tank') and well-matched low-ambiguity sentences (e.g. 'her secrets were written in her diary'). Although these sentences have similar acoustic, phonological, syntactic and prosodic properties (and were rated as being equally natural), the high-ambiguity sentences require additional processing by those brain regions involved in activating and selecting contextually appropriate word meanings. The ambiguity in these sentences goes largely unnoticed, and yet high-ambiguity sentences produced increased signal in left posterior inferior temporal cortex and inferior frontal gyri bilaterally. Given the ubiquity of semantic ambiguity, we conclude that these brain regions form an important part of the network that is involved in computing the meaning of spoken sentences.
Citation of this paper:
The version of record [The Neural Mechanisms of Speech Comprehension: fMRI studies of Semantic Ambiguity. Cerebral Cortex 15, 8 p1261-1269 (2005)] is available online at: https://doi.org/10.1093/cercor/bhi009.