Bone and Joint Institute
Effect of Radial Head Implant Shape on Radiocapitellar Joint Congruency
Document Type
Article
Publication Date
6-1-2017
Journal
Journal of Hand Surgery
Volume
42
Issue
6
First Page
476.e1
Last Page
476.e11
URL with Digital Object Identifier
10.1016/j.jhsa.2017.03.009
Abstract
© 2017 American Society for Surgery of the Hand Purpose: Radial head arthroplasty is indicated in displaced fractures in which comminution precludes successful internal fixation. Many types of radial head implants have been developed varying in material, methods of fixation, and degrees of modularity and geometry. The purpose of this study was to investigate the effect of radial head implant shape on radiocapitellar joint congruency. Methods: Joint congruency was quantified in 7 cadaveric specimens employing a registration and inter-surface distance algorithm and 3-dimensional models obtained using computed tomography. Forearm rotation was simulated after computer-guided implantation of an axisymmetric radial head, a population-based quasi-anatomic radial head implant, and a reverse-engineered anatomic radial head implant. Inter-surface distances were measured to investigate the relative position of the radial head implant and displayed on 3-dimensional color-contour maps. Surface area was measured for inter-surface distances (1.5 mm) and compared for each radial head geometry. Results: There were no statistical differences in the contact surface area between radial head implants during active or passive forearm rotation. The joint was more congruent (larger contact surface area) during active forearm rotation compared with passive forearm rotation. Conclusions: This study investigated the effect of implant geometry on the radiocapitellar joint contact mechanics by examining a commercially available radial head system (axisymmetric), a quasi-anatomic design, and an anatomic reverse-engineered radial head implant. We found no statistical differences in radiocapitellar joint contact mechanics as measured by 3-dimensional joint congruency in cadaveric specimens undergoing continuous simulated forearm rotation. Clinical relevance: The importance of choosing an implant that matches the general size of the native radial head is recognized, but the degree to which it is necessary to create an implant that replicates the native anatomy to restore elbow stability and prevent cartilage degenerative changes remains unclear. This study concluded that the geometry of the implant did not have a statistically significant effect on joint contact mechanics; therefore, future work is needed to examine additional factors related to implant design, such as material choice and implant positioning to investigate their influence on joint contact mechanics.