Bone and Joint Institute

Document Type

Article

Publication Date

2-29-2016

Journal

Journal of Biomechanics

First Page

514

Last Page

519

URL with Digital Object Identifier

10.1016/j.jbiomech.2015.11.001

Abstract

© 2016. The purpose of this study was to employ subject-specific computer models to evaluate the interaction of glenohumeral range-of-motion and Hill-Sachs humeral head bone defect size on engagement and shoulder dislocation. We hypothesized that the rate of engagement would increase as defect size increased, and that greater shoulder ROM would engage smaller defects. Three dimensional computer models of 12 shoulders were created. For each shoulder, additional models were created with simulated Hill-Sachs defects of varying severities (XS=15%, S=22.5%, M=30%, L=37.5%, XL=45% and XXL=52.5% of the humeral head diameter, respectively). Rotational motion simulations without translation were conducted. The simulations ended if the defect engaged the anterior glenoid rim with resultant dislocation. The results showed that the rate of engagement was significantly different between defect sizes (0.001

Notes

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Author Accepted Manuscript. The full published version can be found at https://doi.org/10.1016/j.jbiomech.2015.11.001 in the Journal of Biomechanics.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.