Bone and Joint Institute

Synthesis, self-assembly, and degradation of amphiphilic triblock copolymers with fully photodegradable hydrophobic blocks

Document Type

Article

Publication Date

7-31-2014

Journal

Canadian Journal of Chemistry

Volume

93

Issue

1

First Page

126

Last Page

133

URL with Digital Object Identifier

10.1139/cjc-2014-0263

Abstract

© 2015 Published by NRC Research Press. The development of stimuli-responsive materials is of significant interest for many applications including drug delivery, medical imaging, sensors, and microfluidic devices. Among the available stimuli, light is particularly attractive as it can be applied with high spatial and temporal resolution. We describe here the synthesis of amphiphilic triblock copolymers composed of poly(ethylene glycol) and a hydrophobic block containing o-nitrobenzyl esters throughout the backbone using copper-catalyzed azide-alkyne cycloaddition chemistry. These materials were designed to have a high weight fraction of the hydrophobic block to favour nonmicellar aggregates. The self-assembly in water was studied using nanoprecipitation and the resulting assemblies were characterized by dynamic light scattering and transmission electron microscopy. Under optimized conditions, it was possible to prepare polymer vesicles, commonly referred to as polymersomes, with diameters of approximately 100 nm. The degradation of these materials in response to UV light was studied by spectroscopy, light scattering, and electron microscopy, demonstrating that the vesicles were broken down. These results suggest the potential of these materials for applications such as encapsulation and release.

Find in your library

Share

COinS