Bone and Joint Institute
Biomimetic l-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering
Document Type
Article
Publication Date
1-1-2014
Journal
Acta Biomaterialia
Volume
10
Issue
8
First Page
3484
Last Page
3496
URL with Digital Object Identifier
10.1016/j.actbio.2014.04.014
Abstract
Functionalization of polymeric biomaterials permits the conjugation of cell signaling molecules capable of directing cell function. In this study, l-phenylalanine and l-aspartic acid were used to synthesize poly(ester amide)s (PEAs) with pendant carboxylic acid groups through an interfacial polycondensation approach. Human coronary artery smooth muscle cell (HCASMC) attachment, spreading and proliferation was observed on all PEA films. Vinculin expression at the cell periphery suggested that HCASMCs formed focal adhesions on the functional PEAs, while the absence of smooth muscle α-actin (SMαA) expression implied the cells adopted a proliferative phenotype. The PEAs were also electrospun to yield nanoscale three-dimensional (3-D) scaffolds with average fiber diameters ranging from 130 to 294 nm. Immunoblotting studies suggested a potential increase in SMαA and calponin expression from HCASMCs cultured on 3-D fibrous scaffolds when compared to 2-D films. X-ray photoelectron spectroscopy and immunofluorescence demonstrated the conjugation of transforming growth factor-β1 to the surface of the functional PEA through the pendant carboxylic acid groups. Taken together, this study demonstrates that PEAs containing aspartic acid are viable biomaterials for further investigation in vascular tissue engineering. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Notes
Article is openly available from the journal.