Bone and Joint Institute
Document Type
Article
Publication Date
11-1-2019
Journal
Annals of Biomedical Engineering
Volume
47
Issue
11
First Page
2188
Last Page
2198
URL with Digital Object Identifier
10.1007/s10439-019-02312-2
Abstract
© 2019, The Author(s). Subject- and site-specific modeling techniques greatly improve finite element models (FEMs) derived from clinical-resolution CT data. A variety of density-modulus relationships are used in scapula FEMs, but the sensitivity to selection of relationships has yet to be experimentally evaluated. The objectives of this study were to compare quantitative-CT (QCT) derived FEMs mapped with different density-modulus relationships and material mapping strategies to experimentally loaded cadaveric scapular specimens. Six specimens were loaded within a micro-CT (33.5 μm isotropic voxels) using a custom-hexapod loading device. Digital volume correlation (DVC) was used to estimate full-field displacements by registering images in pre- and post-loaded states. Experimental loads were measured using a 6-DOF load cell. QCT-FEMs replicated the experimental setup using DVC-driven boundary conditions (BCs) and were mapped with one of fifteen density-modulus relationships using elemental or nodal material mapping strategies. Models were compared based on predicted QCT-FEM nodal reaction forces compared to experimental load cell measurements and linear regression of the full-field nodal displacements compared to the DVC full-field displacements. Comparing full-field displacements, linear regression showed slopes ranging from 0.86 to 1.06, r-squared values of 0.82–1.00, and max errors of 0.039 mm for all three Cartesian directions. Nearly identical linear regression results occurred for both elemental and nodal material mapping strategies. Comparing QCT-FEM to experimental reaction forces, errors ranged from − 46 to 965% for all specimens, with specimen-specific errors as low as 3%. This study utilized volumetric imaging combined with mechanical loading to derive full-field experimental measurements to evaluate various density-modulus relationships required for QCT-FEMs applied to whole-bone scapular loading. The results suggest that elemental and nodal material mapping strategies are both able to simultaneously replicate experimental full-field displacements and reactions forces dependent on the density-modulus relationship used.
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Notes
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
The article was originally published as;
Knowles, N.K., Kusins, J., Faieghi, M. et al. Material Mapping of QCT-Derived Scapular Models: A Comparison with Micro-CT Loaded Specimens Using Digital Volume Correlation. Ann Biomed Eng 47, 2188–2198 (2019). https://doi.org/10.1007/s10439-019-02312-2