Bone and Joint Institute
RGS2 promotes the translation of stress-associated proteins ATF4 and CHOP via its eIF2B-inhibitory domain
Document Type
Article
Publication Date
7-1-2019
Journal
Cellular Signalling
Volume
59
First Page
163
Last Page
170
URL with Digital Object Identifier
10.1016/j.cellsig.2019.02.007
Abstract
© 2019 Regulator of G protein signaling 2 (RGS2) is upregulated by multiple forms of stress and can augment translational attenuation associated with the phosphorylation of the initiation factor eIF2, a hallmark of several stress-induced coping mechanisms. Under stress-induced translational inhibition, key factors, such as ATF4, are selectively expressed via alternative translation mechanisms. These factors are known to regulate molecular switches that control cell fate by regulating pro-survival and pro-apoptotic signals. The molecular mechanisms that balance these opposing responses to stresses are unclear. The present results suggest that RGS2 may be an important regulatory component in the cellular stress response through its translational control abilities. Previously, we have shown that RGS2 can interact with the translation initiation factor, eIF2B, and inhibit de novo protein synthesis. Here, we demonstrate that the expression of either full length RGS2 or its eIF2B-interacting domain (RGS2 eb ) significantly increases levels of ATF4 and CHOP, both of which are linked to stress-induced apoptosis. Furthermore, we show that these effects are translationally regulated and independent of eIF2 phosphorylation. The present results thus point to a novel function of RGS2 in the stress response directly related to its ability to reduce global protein synthesis.