Bone and Joint Institute

Blood flow and muscle oxygenation during low, moderate, and maximal sustained isometric contractions

Document Type

Article

Publication Date

9-3-2015

Journal

American Journal of Physiology - Regulatory Integrative and Comparative Physiology

Volume

309

Issue

5

First Page

R475

Last Page

R481

URL with Digital Object Identifier

10.1152/ajpregu.00387.2014

Abstract

© 2015 the American Physiological Society. A reduction of blood flow to active muscle will precipitate fatigue, and sustained isometric contractions produce intramuscular and compartmental pressures that can limit flow. The present study explored how blood flow and muscle oxygenation respond to isometric contractions at low, moderate, and maximal intensities. Over two visits, 10 males (26 ± 2 yr; means ± SD) performed 1-min dorsiflexion contractions at 30, 60, and 100% of maximal voluntary contraction (MVC) torque. Doppler ultrasound of the anterior tibial artery was used to record arterial diameter and mean blood velocity and to calculate absolute blood flow. The tissue oxygenation index (TOI) of tibialis anterior was acquired with nearinfrared spectroscopy (NIRS). There was a progressive increase in blood flow at 30% MVC (peak of 289 ± 139% resting value), no change from rest until an increase in the final 10 s of exercise at 60% MVC (peak of 197 ± 102% rest), and an initial decrease (59 ± 30% resting value) followed by a progressive increase at 100% MVC (peak of 355 ± 133% rest). Blood flow was greater at 30 and 100% than 60% MVC during the last 30 s of exercise. TOI was ~63% at rest and, within 30 s of exercise, reached steady-state values of ~42%, ~22%, and ~22% for 30, 60, and 100% MVC, respectively. Even maximal contraction of the dorsiflexors is unable to cause more than a transient decrease of flow in the anterior tibial artery. Unlike dynamic or intermittent isometric exercise, our results indicate blood flow is not linearly graded with intensity or directly coupled with oxygenation during sustained isometric contractions.

Notes

Article is freely available from the journal

Find in your library

Share

COinS