Document Type
Article
Publication Date
1-1-2015
Journal
PLoS One
Volume
10
Issue
5
First Page
0125102
Last Page
0125102
URL with Digital Object Identifier
10.1371/journal.pone.0125102
Abstract
BACKGROUND: Respective and combined effects of impairments in sensorimotor systems and cognition on gait performance have not been fully studied. This study aims to describe the respective effects of impairments in muscle strength, distance vision, lower-limb proprioception and cognition on the Timed Up & Go (TUG) scores (i.e., performed TUG [pTUG], imagined TUG [iTUG] and the time difference between these two tests [delta TUG]) in older community-dwellers; and to examine their combined effects on TUG scores.
METHODS: Based on a cross-sectional design, 1792 community-dwellers (70.2±4.8 years; 53.6% female) were recruited. Gait performance was assessed using pTUG, iTUG and delta TUG. Participants were divided into healthy individuals and 15 subgroups of individuals according to the presence of impairment in one or more subsystems involved in gait control (i.e., muscle strength and/or distance vision and/or lower-limb proprioception and/or cognition [episodic memory and executive performance]). Impairment in muscle strength, distance vision and lower-limb proprioception was defined as being in the lowest tertile of performance. Impairment in cognition was defined as abnormal episodic memory and executive tests.
RESULTS: A total of 191 (10.7%) exhibited impairment in muscle strength, 188 (10.5%) in distance vision, 302 (16.9%) in lower-limb proprioception, and 42 (2.3%) in cognition. Linear regressions showed that cognitive impairment as well as dual combinations of impairments were associated with increased pTUG (P
CONCLUSION: Cognitive integrity is central for efficient gait control and stability, whereas lower-limb proprioception seems to be central for gait imagery.