Document Type

Article

Publication Date

2023

Journal

Front Neurosci

Volume

17

First Page

1074730

Last Page

1074730

URL with Digital Object Identifier

https://doi.org/10.3389/fnins.2023.1074730

Abstract

Water diffusion anisotropy MRI is sensitive to microstructural changes in the brain that are hallmarks of various neurological conditions. However, conventional metrics like fractional anisotropy are confounded by neuron fiber orientation dispersion, and the relatively low resolution of diffusion-weighted MRI gives rise to significant free water partial volume effects in many brain regions that are adjacent to cerebrospinal fluid. Microscopic fractional anisotropy is a recent metric that can report water diffusion anisotropy independent of neuron fiber orientation dispersion but is still susceptible to free water contamination. In this paper, we present a free water elimination (FWE) technique to estimate microscopic fractional anisotropy and other related diffusion indices by implementing a signal representation in which the MRI signal within a voxel is assumed to come from two distinct sources: a tissue compartment and a free water compartment. A two-part algorithm is proposed to rapidly fit a set of diffusion-weighted MRI volumes containing both linear- and spherical-tensor encoding acquisitions to the representation. Simulations and

Notes

PMID: 36960165

PMCID: PMC10027922

DOI: 10.3389/fnins.2023.1074730

Creative Commons License

Creative Commons Attribution-Noncommercial 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

Find in your library

Share

COinS